Skip to article frontmatterSkip to article content

Variational Quantum Eigensolver (VQE) for Number Partitioning Problem

The Variational Quantum Eigensolver (VQE) is a hybrid quantum-classical algorithm designed to find the ground state energy of a Hamiltonian, making it suitable for optimization problems. Here I will explain how the VQE algorithm can be implemented in Cirq to solve the number partitioning problem, where a set of numbers is divided into two subsets such that the difference between their sums is minimized.

Problem Description

Number Partitioning

Given a set of numbers S={a1,a2,...,an}S = \{a_1, a_2, ..., a_n\}, the goal is to divide SS into two subsets AA and BB such that:

Cost Function: C=(iAaiiBai)2\text{Cost Function: } C = (\sum_{i \in A} a_i - \sum_{i \in B} a_i)^2

This can be reformulated as:

C=(i=1naisi)2,C = (\sum_{i=1}^{n} a_i s_i)^2,

where si=1s_i = 1 if aiAa_i \in A and si=1s_i = -1 if aiBa_i \in B.

Variational Quantum Eigensolver (VQE) Algorithm Overview

VQE combines quantum computing and classical optimization to iteratively minimize the expectation value of a Hamiltonian. The key steps are:

  1. Hamiltonian Formulation: Define the problem as a Hamiltonian where the ground state corresponds to the optimal solution.
  2. Ansatz Design: Construct a parameterized quantum circuit (ansatz) that represents possible solutions.
  3. Quantum Measurement: Measure the expectation value of the Hamiltonian using the quantum circuit.
  4. Classical Optimization: Adjust parameters using a classical optimizer to minimize the expectation value.
  5. Repeat until convergence to approximate the ground state energy.

How VQE Differs from QAOA

While both VQE and QAOA are variational quantum algorithms, they have some key differences:

  1. VQE is more general and aims to find the ground state of any Hamiltonian, while QAOA is specifically designed for combinatorial optimization problems.

  2. VQE allows for more flexible ansatz designs (like the hardware-efficient ansatz), whereas QAOA has a more rigid alternating-operator structure with cost and mixer Hamiltonians[5].

  3. VQE typically has more parameters to optimize, especially with deep ansatzes, compared to QAOA which has 2p parameters for p layers.

# Import necessary libraries
try:
    import cirq
except ImportError:
    print("installing cirq...")
    !pip install --quiet cirq
    print("installed cirq.")
import cirq
import numpy as np
from scipy.optimize import minimize
# Generate random numbers to partition
numbers = np.random.randint(-10, 100, 6)
n_qubits = len(numbers)
print("Numbers to partition:", numbers)

# Create qubits
qubits = [cirq.NamedQubit(f'q{i}') for i in range(n_qubits)]
Numbers to partition: [37 27 97 39 -1 47]
# Define a parameterized circuit (ansatz) for VQE
def create_ansatz(params, qubits):
    """
    Create a parameterized quantum circuit for VQE.
    This is a hardware-efficient ansatz with layers of single qubit rotations
    and two-qubit entangling operations.
    """
    circuit = cirq.Circuit()

    # Initial state - Start with all qubits in superposition
    circuit.append(cirq.H.on_each(qubits))

    # Number of layers in the ansatz
    n_layers = len(params) // (n_qubits + n_qubits*(n_qubits-1)//2)

    param_idx = 0
    for _ in range(n_layers):
        # Single qubit rotations (X-rotations)
        for i in range(n_qubits):
            circuit.append(cirq.rx(params[param_idx])(qubits[i]))
            param_idx += 1

        # Two-qubit entangling operations (ZZ interactions)
        for i in range(n_qubits):
            for j in range(i+1, n_qubits):
                if param_idx < len(params):  # Check to avoid index out of range
                    circuit.append(cirq.ZZPowGate(exponent=params[param_idx]/np.pi)(qubits[i], qubits[j]))
                    param_idx += 1

    return circuit

# Set up the simulator
simulator = cirq.Simulator()

# Function to calculate the expectation value of our Hamiltonian
def expectation_value(params):
    """
    Calculate the expectation value of the number partitioning Hamiltonian
    for the state prepared by the parameterized circuit.
    """
    # Create the ansatz circuit
    circuit = create_ansatz(params, qubits)

    # Simulate the circuit to get the state vector
    result = simulator.simulate(circuit)
    state_vector = result.final_state_vector

    # Calculate the expectation value of the Hamiltonian
    # For number partitioning, the Hamiltonian is (sum(a_i * Z_i))^2
    # which expands to sum(a_i^2) + sum_{i<j} 2*a_i*a_j*Z_i*Z_j

    energy = sum(a*a for a in numbers)  # Constant term

    # Calculate the contribution from each ZZ term
    for i in range(n_qubits):
        for j in range(i+1, n_qubits):
            weight = 2 * numbers[i] * numbers[j]

            # Create the Z_i * Z_j operator
            zz_op = cirq.Z(qubits[i]) * cirq.Z(qubits[j])

            # Calculate its expectation value
            zz_val = zz_op.expectation_from_state_vector(
                        state_vector,
                        qubit_map={q: i for i, q in enumerate(qubits)}
                    ).real

            energy += weight * zz_val

    return energy

# Set the number of layers and initialize parameters
n_layers = 2
total_params = n_layers * (n_qubits + n_qubits*(n_qubits-1)//2)
initial_params = np.random.uniform(0, 2*np.pi, total_params)

# Run the VQE optimization
print("Starting VQE optimization...")
result = minimize(
    expectation_value,
    initial_params,
    method='COBYLA',  # Classical optimizer for VQE
    options={'maxiter': 200}
)
optimal_params = result.x
print("Optimization complete!")
print("Final energy:", result.fun)

# Run the optimized circuit and measure
optimized_circuit = create_ansatz(optimal_params, qubits)
optimized_circuit.append(cirq.measure(*qubits, key='result'))
final_result = simulator.run(optimized_circuit, repetitions=1000)
measurements = final_result.measurements['result']

# Analyze the results
def bitstring_to_partition(bits):
    """Convert a bitstring to a partition (1 for subset A, -1 for subset B)."""
    return [1 if bit == 0 else -1 for bit in bits]

def compute_cost(spin_assignment):
    """Compute the cost (squared sum difference) of a partition."""
    S = sum(a * spin for a, spin in zip(numbers, spin_assignment))
    return S * S

# Count the occurrences of each partition and calculate their costs
partition_counts = {}
for bits in measurements:
    partition = tuple(bitstring_to_partition(bits))
    cost = compute_cost(partition)
    if partition in partition_counts:
        partition_counts[partition]['count'] += 1
    else:
        partition_counts[partition] = {'cost': cost, 'count': 1}

# Find the minimum cost partitioning
min_cost = min(info['cost'] for info in partition_counts.values())
optimal_partitions = [p for p, info in partition_counts.items() if info['cost'] == min_cost]

# Display the results
try:
    from tabulate import tabulate
except ImportError:
    !pip install tabulate
    from tabulate import tabulate

table_data = []
for partition in optimal_partitions:
    sub_a = [numbers[i] for i in range(n_qubits) if partition[i] == 1]
    sub_b = [numbers[i] for i in range(n_qubits) if partition[i] == -1]
    table_data.append([partition, sub_a, sub_b, sum(sub_a) - sum(sub_b), partition_counts[partition]['count']])

headers = ["Partition", "First Partition", "Second Partition", "Sum Difference", "Frequency"]
print(tabulate(table_data, headers=headers, tablefmt="grid"))
Starting VQE optimization...
Optimization complete!
Final energy: 5162.241280093789
+-----------------------+-------------------+--------------------+------------------+-------------+
| Partition             | First Partition   | Second Partition   |   Sum Difference |   Frequency |
+=======================+===================+====================+==================+=============+
| (-1, 1, 1, -1, 1, -1) | [27, 97, -1]      | [37, 39, 47]       |                0 |           4 |
+-----------------------+-------------------+--------------------+------------------+-------------+
| (1, -1, -1, 1, -1, 1) | [37, 39, 47]      | [27, 97, -1]       |                0 |           2 |
+-----------------------+-------------------+--------------------+------------------+-------------+

Improvements

  • Better Ansatz: Explore different ansatz architectures.
  • More Layers: Increase the number of layers in the ansatz to improve accuracy.
  • Adaptive VQE: Implement an adaptive VQE approach where the ansatz is built iteratively based on the problem.
  • Parameter Initialization: Implement a better way to do parameter initialization.
  • Better way to handle potential qubit error with better error mitigation techniques.