Lattice Boltzmann simulation
Jishnu Rajendran

Lattice Boltzmann methods are a family of computational methods for simulating the evolution of fluid flows in systems. In this notebook, we implement a 2D square domain with rigid barrier using Lattice Boltzmann method. The simulation is based on the LBM model and the boundary conditions are discussed in the following sections. Instead of solving the Navier–Stokes equations directly, a fluid density on a lattice is simulated with streaming and collision (relaxation) processes. As a versatile model, the dynamics of the fluid can be simulated fairly straight. The LBM model can be made to mimic common fluid behaviour like vapour/liquid coexistence, and so fluid systems such as liquid droplets can be simulated.

1. Lattice Boltzmann simulation of a 2D square domain with rigid barrier

"""
Lattice-Boltzmann method for fluid simulation
Simple rectangular barrier
@author: Jishnu
"""
import numpy, time, matplotlib.pyplot, matplotlib.animation

height = 80                     # dimensions of lattice
width = 200
viscosity = 0.02                    # viscosity
omega = 1 / (3*viscosity + 0.5)             # parameter for relaxation
u0 = 0.1                        # initial and in-flow speed
f_n = 4.0/9.0                       # lattice-Boltzmann weight factors
o_n   = 1.0/9.0
o_36  = 1.0/36.0
performanceData = True                  # True if performance data is needed

Here we initialize the dimensions of the domain and the initial conditions of fluid flow. We will choose steady flow and initialise the density and velocity arrays.

# Initialize arrays --steady rightward flow:
n0 = f_n * (numpy.ones((height,width)) - 1.5*u0**2) # particle densities along 9 directions
nN = o_n * (numpy.ones((height,width)) - 1.5*u0**2)
nS = o_n * (numpy.ones((height,width)) - 1.5*u0**2)
nE = o_n * (numpy.ones((height,width)) + 3*u0 + 4.5*u0**2 - 1.5*u0**2)
nW = o_n * (numpy.ones((height,width)) - 3*u0 + 4.5*u0**2 - 1.5*u0**2)
nNE = o_36 * (numpy.ones((height,width)) + 3*u0 + 4.5*u0**2 - 1.5*u0**2)
nSE = o_36 * (numpy.ones((height,width)) + 3*u0 + 4.5*u0**2 - 1.5*u0**2)
nNW = o_36 * (numpy.ones((height,width)) - 3*u0 + 4.5*u0**2 - 1.5*u0**2)
nSW = o_36 * (numpy.ones((height,width)) - 3*u0 + 4.5*u0**2 - 1.5*u0**2)
rho = n0 + nN + nS + nE + nW + nNE + nSE + nNW + nSW            # macroscopic density
ux = (nE + nNE + nSE - nW - nNW - nSW) / rho                # macroscopic x velocity
uy = (nN + nNE + nNW - nS - nSE - nSW) / rho                # macroscopic y velocity

1.1. Effects of a Barrier in a steady flow

We choose a simple rectangle barrier in the domain.

barrier = numpy.zeros((height,width), bool)                     # True wherever there's a barrier
barrier[(height//2)-8:(height//2)+8, (height//2)-4:(height//2)+4] = True            # simple linear barrier
barrierN = numpy.roll(barrier,  1, axis=0)                      # sites just north of barriers
barrierS = numpy.roll(barrier, -1, axis=0)                      # sites just south of barriers
barrierE = numpy.roll(barrier,  1, axis=1)
barrierW = numpy.roll(barrier, -1, axis=1)
barrierNE = numpy.roll(barrierN,  1, axis=1)
barrierNW = numpy.roll(barrierN, -1, axis=1)
barrierSE = numpy.roll(barrierS,  1, axis=1)
barrierSW = numpy.roll(barrierS, -1, axis=1)

2. Move all particles by one step along their directions of motion (pbc):

    def stream():
    global nN, nS, nE, nW, nNE, nNW, nSE, nSW
    nN  = numpy.roll(nN,   1, axis=0)           # axis 0 is north-south; + direction is north
    nNE = numpy.roll(nNE,  1, axis=0)
    nNW = numpy.roll(nNW,  1, axis=0)
    nS  = numpy.roll(nS,  -1, axis=0)
    nSE = numpy.roll(nSE, -1, axis=0)
    nSW = numpy.roll(nSW, -1, axis=0)
    nE  = numpy.roll(nE,   1, axis=1)           # axis 1 is east-west; + direction is east
    nNE = numpy.roll(nNE,  1, axis=1)
    nSE = numpy.roll(nSE,  1, axis=1)
    nW  = numpy.roll(nW,  -1, axis=1)
    nNW = numpy.roll(nNW, -1, axis=1)
    nSW = numpy.roll(nSW, -1, axis=1)
    # Using boolean arrays to handle barrier collisions (bounce-back):
    nN[barrierN] = nS[barrier]
    nS[barrierS] = nN[barrier]
    nE[barrierE] = nW[barrier]
    nW[barrierW] = nE[barrier]
    nNE[barrierNE] = nSW[barrier]
    nNW[barrierNW] = nSE[barrier]
    nSE[barrierSE] = nNW[barrier]
    nSW[barrierSW] = nNE[barrier]
def collide():
    """
    Calculates the collision step of the Lattice Boltzmann Method (LBM) algorithm.

    Updates the macroscopic variables `rho`, `ux`, and `uy` based on the population
    distributions `n0`, `nN`, `nS`, `nE`, `nW`, `nNE`, `nNW`, `nSE`, and `nSW`.

    Parameters:
    None

    Returns:
    None
    """
    global rho, ux, uy, n0, nN, nS, nE, nW, nNE, nNW, nSE, nSW
    rho = n0 + nN + nS + nE + nW + nNE + nSE + nNW + nSW
    ux = (nE + nNE + nSE - nW - nNW - nSW) / rho
    uy = (nN + nNE + nNW - nS - nSE - nSW) / rho
    ux2 = ux * ux
    uy2 = uy * uy
    u2 = ux2 + uy2
    omu215 = 1 - 1.5*u2
    uxuy = ux * uy
    n0 = (1-omega)*n0 + omega * f_n * rho * omu215
    nN = (1-omega)*nN + omega * o_n * rho * (omu215 + 3*uy + 4.5*uy2)
    nS = (1-omega)*nS + omega * o_n * rho * (omu215 - 3*uy + 4.5*uy2)
    nE = (1-omega)*nE + omega * o_n * rho * (omu215 + 3*ux + 4.5*ux2)
    nW = (1-omega)*nW + omega * o_n * rho * (omu215 - 3*ux + 4.5*ux2)
    nNE = (1-omega)*nNE + omega * o_36 * rho * (omu215 + 3*(ux+uy) + 4.5*(u2+2*uxuy))
    nNW = (1-omega)*nNW + omega * o_36 * rho * (omu215 + 3*(-ux+uy) + 4.5*(u2-2*uxuy))
    nSE = (1-omega)*nSE + omega * o_36 * rho * (omu215 + 3*(ux-uy) + 4.5*(u2-2*uxuy))
    nSW = (1-omega)*nSW + omega * o_36 * rho * (omu215 + 3*(-ux-uy) + 4.5*(u2+2*uxuy))
    # Force steady rightward flow at ends
    # no need to set 0, N, and S component
    nE[:,0] = o_n * (1 + 3*u0 + 4.5*u0**2 - 1.5*u0**2)
    nW[:,0] = o_n * (1 - 3*u0 + 4.5*u0**2 - 1.5*u0**2)
    nNE[:,0] = o_36 * (1 + 3*u0 + 4.5*u0**2 - 1.5*u0**2)
    nSE[:,0] = o_36 * (1 + 3*u0 + 4.5*u0**2 - 1.5*u0**2)
    nNW[:,0] = o_36 * (1 - 3*u0 + 4.5*u0**2 - 1.5*u0**2)
    nSW[:,0] = o_36 * (1 - 3*u0 + 4.5*u0**2 - 1.5*u0**2)
# Compute curl of the  velocity field:
def curl(ux, uy):
    """
    Calculates the curl of a vector field.

    Parameters:
        ux (numpy.ndarray): The x-component of the vector field.
        uy (numpy.ndarray): The y-component of the vector field.

    Returns:
        numpy.ndarray: The curl of the vector field.
    """
    return numpy.roll(uy,-1,axis=1) - numpy.roll(uy,1,axis=1) - numpy.roll(ux,-1,axis=0) + numpy.roll(ux,1,axis=0)

3. Visualization of the simulation

# for animation.
theFig = matplotlib.pyplot.figure(figsize=(8,3))
fluidImage = matplotlib.pyplot.imshow(curl(ux, uy), origin='lower', norm=matplotlib.pyplot.Normalize(-.1,.1),
                                    cmap=matplotlib.pyplot.get_cmap('jet'), interpolation='none')
bImageArray = numpy.zeros((height, width, 4), numpy.uint8)  # an RGBA image
bImageArray[barrier,3] = 255                                # set alpha=255 barrier sites only
barrierImage = matplotlib.pyplot.imshow(bImageArray, origin='lower', interpolation='none')

# Function called for each successive animation frame:
startTime = time.perf_counter()
#frameList = open('frameList.txt','w')      # file containing list of images
def nextFrame(arg):                         # (arg is the frame number, which we don't need)
    global startTime
    if performanceData and (arg%100 == 0) and (arg > 0):
        endTime = time.perf_counter()
        print(  "%1.1f" % (100/(endTime-startTime)), 'frames per second' )
        startTime = endTime
    #frameName = "frame%04d.png" % arg
    #matplotlib.pyplot.savefig(frameName)
    #frameList.write(frameName + '\n')
    for step in range(15):                  # adjust number of steps for smooth animation
        stream()
        collide()
    fluidImage.set_array(curl(ux, uy))
    return (fluidImage, barrierImage)       # return the figure elements to redraw

animate = matplotlib.animation.FuncAnimation(theFig, nextFrame, interval=0.5, blit=True)
matplotlib.pyplot.show()

Author: Jishnu

Created: 2023-12-27 Wed 20:18